If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+4x=224
We move all terms to the left:
13x^2+4x-(224)=0
a = 13; b = 4; c = -224;
Δ = b2-4ac
Δ = 42-4·13·(-224)
Δ = 11664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11664}=108$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-108}{2*13}=\frac{-112}{26} =-4+4/13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+108}{2*13}=\frac{104}{26} =4 $
| 5x-3x-2=18 | | s-33=41 | | 6v^2-56=11v+9 | | x−11=–13 | | 12+11x=21 | | Y=2(2x-5 | | d/1.6+31=41 | | -3y-4=2(y-7) | | u+u+52=180 | | -5=c+(-1) | | 6-2y=-9-2(-4-3y) | | 7u+8=9u+2 | | 2(w+4)=-5w-48 | | a=2/3=5/6 | | x+(x+30)+(x+120)=180 | | r+55=97 | | k+(-31/4)=25/12 | | 55.5x=52 | | 16x+23=(16-2)180/16 | | 7z-96=z | | 3m+2=2m+1 | | x°+(x+30)°+(x+120)°=180° | | 152=k | | p+51/2=72/3 | | 4=(17m-14) | | 3.2=1.2g | | p+p+20+p+p+p+7+p=(2p+9) | | b-25=32 | | 16=11k | | 2s=5s-51 | | 3(m+8)=33 | | -6=-9+a |